

Afrique SCIENCE 27(3) (2025) 99 - 106 ISSN 1813-548X, http://www.afriquescience.net

Gommose de l'anacardier (*Anacardium occidentale* L.) au Burkina Faso : Etiologie et stratégies de lutte : revue bibliographique

Yéri Jacqueline KANSIE^{1,2*}, Zoéyandé Oumarou DIANDA², Windpouiré Vianney TARPAGA², Issa WONNI² et Irénée SOMDA¹

¹ Université Nazi BONI (UNB), Ecole doctorale de Sciences Naturelles et Agronomie (SNA), Laboratoire Bioressources Agrosystèmes et Santé de l'Environnement (LaBASE), 01 BP 1091 Bobo-Dioulasso 01, Bobo-Dioulasso, Burkina Faso

² Centre Régional d'Excellence en Fruits et Légumes (CRE-FL), Institut de l'Environnement et de Recherches Agricoles (INERA), Centre National de Recherche Scientifique et Technologique (CNRST), 01 BP 910 Bobo-Dioulasso 01, Station de Farako-Bâ, Bobo-Dioulasso, Burkina Faso

(Reçu le 12 Mai 2025 ; Accepté le 18 Septembre 2025)

Résumé

Cette étude porte sur la gommose de l'anacardier et les méthodes de lutte au Burkina Faso. Une revue systématique des travaux publiés sur la période octobre 2018 à août 2025 a été conduite à partir des moteurs de recherche académique PubMed, Hinari, Google Scholar, ResearchGate, Semantic Scholar, et les bases de données scientifiques Scopus, Web of Science (WoS), CASSI (Chemical Abstracts Source Index). Les documents consultés ont été retenus selon des critères de pertinence portant sur les titres, les résumés et le contenu des articles, particulièrement ceux récents traitant de la symptômatologie, des agents pathogènes, des facteurs de dissémination et des méthodes de lutte. Les résultats montrent que la gommose de l'anacardier est une maladie causée par le champignon *Lasiodiplodia theobromae*. Les facteurs environementaux et anthropiques favorisent la propagtion du champignon. Les stratégies de lutte contre la maladie sont la lutte mécanique et chimique. Des alternatives de lutte biologique, génétique et intégrée émergent comme des approches prometteuses. Au Burkina Faso, il existe des études très récentes portant sur les symptômes et les agents pathogènes de la maladie chez l'anacardier. Toutefois, ces études restent limitées concernant les méthodes de lutte contre la maladie. Cette synthèse révèle la nécessité de mener des études approfondies sur l'efficacité des moyens de lutte et de l'importance de développer une lutte intégrée et adaptée aux réalités des producteurs du Burkina Faso.

Mots-clés : anacardier, gommose, champignon, méthodes de lutte, Burkina Faso.

^{*} Correspondance, courriel: yeri.jacqueline@gmail.com

Abstract

Cashew tree Gummosis ($Anacardium\ occidentale\ L.$) in Burkina Faso: Etiology and control strategies: bibliographic review

This study focuses on cashew tree gummosis and control methods in Burkina Faso. A systematic review of relevant literature was carried out from October 2018 to August 2025 through the academic research engines PubMed, Hinari, Google Scholar, ResearchGate, Semantic Scholar, and scientific databases including Scopus, Web of Science (WoS), Chemical Abstracts Source Index (CASSI). The documents were selected basing on the relevance criteria applied to titles, abstracts and full texts, particularly the most recent studies focusing on symptomatology, pathogens, dissemination factors and control methods. The findings indicate that cashew tree gummosis is caused by *Lasiodiplodia theobromae*. Both, environmental and anthropogenic factors contribute to the spread of the pathogen. Control strategies reported include mechanical and chemical methods, along with emerging alternatives such as biological, genetic and integrated approaches which are considered promising. In Burkina Faso, recent studies have identified the symptoms and pathogens associated with cashew tree gummosis. However, these studies on disease control methods remains limited. This synthesis highlights the need for further investigations on the effectiveness of control strategies and the importance of developing an integrated control practices adapted to the realities of cashew farmers in Burkina Faso.

Keywords: cashew tree, gummosis, fungus, control methods, Burkina Faso

1. Introduction

L'anacardier (*Anacardium occidentale* L.) est une espèce de plus en plus cultivée à grande échelle pour ses noix, très appréciées des consommateurs. Sa culture s'est considérablement développée dans plusieurs pays du monde dont l'Afrique de l'Ouest [1]. Au Burkina Faso, la noix de cajou est le troisième produit agricole d'exportation, après le coton et le sésame selon le Conseil burkinabè de l'anacarde [2]. La production nationale est estimée à environ 106 044 tonnes produites sur 65 800 ha par 45 000 agriculteurs [2]. Cette production est passée à 143 965,3 tonnes sur une surface de 123 970 ha en 2023 [3]. En 2020, les exportations de noix de cajou ont généré des recettes de 39,042 milliards de FCFA, soit 1,6 % des exportations totales du pays [2]. La production de cajou est largement concentrée dans quatre (04) grandes régions : Cascades (42 %), Sud-Ouest (33 %), Hauts-Bassins (22 %) et Centre-Ouest (2 %) [2]. Par ailleurs, des zones de production émergentes, représentant environ 1 % de la production nationale, sont en cours de développement dans les régions du Mouhoun, du Centre, du Centre-Sud et de l'Est, soulignant le dynamisme de la filière et son importance croissante dans ces nouvelles zones agro-écologiques [2]. Malgré son importance, le secteur de la noix de cajou est également confronté à des problèmes majeurs qui affectent son développement. Parmi les principales contraintes affectant la production de noix de cajou, la faible qualité du matériel de plantation reste un problème critique [1]. En outre, des maladies bactériennes et fongiques affectant les anacardiers ont été signalées dans des études antérieures [4, 5], ainsi que d'importants dégâts causés par des insectes ravageurs [6]. La gommose, infection fongique grave est citée parmi les maladies affectant le cajou, [7]. Plusieurs études à travers le monde ont rapporté une large gamme de symptômes associés à la gommose. Il s'agit notamment de chancres noirs sur le tronc, les branches et les rameaux, du suintement d'une gomme allant du clair au jaune, de la chute des feuilles, du dépérissement et de la mort de la plante [8]. Des études très récentes au Burkina Faso ont montré plusieurs symptômes caractéristiques de la gommose d'anacardier. Il s'agit principalement de chancres noirs sur le tronc, l'écoulement de gomme, le dessèchement des rameaux, la chute foliaire et dans les cas sévères, le dépérissement total de l'arbre [9]. Plusieurs études ont identifié Lasiodiplodia theobromae comme un champignon pathogène associé à la gommose de plusieurs espèces d'arbres fruitiers et forestiers [10, 11]. Par ailleurs, des études très récentes au Burkina Faso ont identifié le champignon *Lasiodiplodia theobromae* comme agent pathogène associé à la gommose et au dépérissement de l'anacardier [12]. Pour contrôler cette maladie plusieurs méthodes sont utilisées. Elles comprennent la lutte physique, qui implique l'application de bonnes pratiques agricoles [13, 14], la lutte chimique [15], la lutte génétique [16], ainsi que la gestion intégrée, qui combine harmonieusement les différentes approches. En effet, l'efficacité de chaque méthode dépend largement de la nature du pathogène ciblé [7]. Les résultats obtenus montrent l'existence de plusieurs études portant sur la gommose des arbres, y compris l'anacardier, dont certaines ont été récemment obtenus au Burkina Faso. Cependant, les méthodes de lutte contre cette maladie restent peu documentées à l'échelle nationale. L'objectif de cette étude est de faire l'état des lieux des connaissances actuelles sur cette problématique, en identifiant les symptômes observés et les agents pathogènes associés, les facteurs de dévéloppement de la maladie, et enfin les différentes méthodes de lutte utilisées.

2. Méthodologie

Cette synthèse a été menée sur la période allant d'octobre 2018 à août 2025. Les mots clés suivants cashew tree, gummosis, symptoms, associated pathogens, *Lasiodiplodia theobromae* or *Botryodiplodia theobromae*, phylogeny, control methods et leurs équivalents français ont été utilisés. Ces mots clés ont été intoduits dans les moteurs de recherche académique que sont PubMed, Hinari, Google Scholar, ResearchGate, Semantic Scholar, et les bases de données scientifiques dont Scopus, WoS, CASSI. Les documents consultés ont été retenus selon des critères de pertinence portant sur les titres, les résumés et le contenu des articles. Une attention particulière a été accordée aux articles traitant de la symptômatologie, des agents pathogènes, des facteurs de dissémination et des méthodes de lutte.

3. Résultats et discussion

3-1. Symptômes et agents pathogènes

La gommose se manifeste de manière similaire chez les anacardiers et les autres arbres fruitiers. Les premiers symptômes commencent par une lésion au niveau du tronc, qui évolue en chancres suivis d'exsudation de gomme. Chez les anacardiers, la gommose se manifeste généralement par des chancres noirs répandus sur le tronc, les rameaux et les branches, l'écoulement de la gomme [9]. Les symptômes sont visibles aussi bien chez les jeunes plantes que chez les adultes [4]. La *Figure 1* montre les différents symptômes de la gommose des anacardiers décrits dans une étude très récente au Burkina faso [9].

Figure 1 : Symptômes observés sur les anacardiers malades. (A-C : chancres sur les troncs, D-F : exsudation de la gomme sur le tronc et les branches)

Une approche combinant des analyses morphologiques, moléculaires et pathogéniques décrites par plusieurs sources documentaires ont permis d'incriminer l'espèce L. theobromae dans la gommose des arbres fruitiers, des essences forestières, notamment de l'anacardier. En Côte d'Ivoire, c'est un complexe d'association de champignons de Lasiodiplodia theobromae et Pestalotia heterocornis qui a été isolé sur des chancres noirs des rameaux [18]. Au Ghana par contre, les espèces Colletotrichum gloeosporioides et Lasiodiplodia theobromae ont été identifiées comme agents associés à la gommose des rameaux et des tiges de l'anacardier. L. theobromae a également été impliqué dans les brûlures foliaires, dans le dépérissement des rameaux et de l'inflorescence [19]. En Egypte, elle entraine le dépérissement, le dessèchement, la pourriture des racines et des fruits, les brûlures, la gommose, la nécrose des tiges, la tache des feuilles, la maladie du balai de sorcière et la gommose des arbres fruitiers [11]. Au Burkina Faso, très récemment, l'espèce L. theobromae a été associée à la gommose et au dépérissement de l'anacardier [12]. La caractérisation morphologique des isolats de *L. theobromae* dans des travaux antérieurs et récents [12, 20] a permis de montrer la variabilité au sein de l'espèce à travers la taille des conidies de ces différents isolats. Pour l'identification précise de l'espèce *L. theobromae,* l'amplification par réaction en chaîne par polymérase (PCR) des régions de gènes de l'espace transcrit interne (ITS), du facteur d'élongation partiel 1-alpha (EF1- α) et de la β-tubuline (β-tub, TUB) est suivie d'un séquençage et d'une analyse phylogénétique comparée aux séquences de référence disponibles dans GenBank [12]. Les données de séquençage permettent d'avoir une vue large de la diversité et de déduire les relations phylogénétiques existantes entre les espèces du genre Lasiodiplodia [11]. Par ailleurs, des tests de pathogénicité ont été réalisées avec Lasiodiplodia theobromae sur diverses parties de plantes, incluant les feuilles (pousses vertes détachées), les rameaux, les fruits et les plants aussi bien *in vitro* qu'*in vivo*, sur plusieurs cultures dont le manguier et l'anacardier. Ces expérimentations documentées dans plusieurs études [12, 16] ont confirmé le postulat de Koch, démontrant que l'agent pathogène a induit les mêmes symptômes caractéristiques. Il s'agit des chancres noirs, la pourriture, l'écoulement de gomme, le dépérissement des rameaux et des branches. Des recherches antérieures [21] ont aussi montré que l'isolat de Lasiodiplodia le plus virulent sécrète une quantité

d'ammoniac supérieure à celle de l'isolat le moins virulent, tant *in vitro* qu'*in vivo*. De manière succincte, les symptômes de la gommose, tels que décrits par les différentes études sont bien visibles. Ils peuvent être également apprécier à l'œil nu. Ces symptômes se résument principalement à une coulée anormale de la gomme sur les troncs, les branches, et les inflorescences de l'anacardier, le dépérissement, le dessèchement et parfois la mort de la plante. Cette maladie est causée par *Lasiodiplodia theobromae*.

3-2. Voies de propagation de la maladie : facteurs de développement de la maladie

La gommose de l'anacardier peut se dévélopper par différents mécanismes. L'agent pathogène responsable de la maladie survit dans le sol et c'est le cas de Lasiodiplodia theobromae [22]. Par ailleurs, le milieu PDA (dextrose de pomme de terre), un pH compris entre 4,5 et 8,5, dont l'optimum est 7,0, des températures comprises entre 15° et 40°C, dont l'optimum observée est 28°C, et la lumière sont des facteurs favorisant mieux la croissance mycélienne et la sporulation de L. theobromae [23]. De même l'apparition de la gommose de l'anacardier est fortement liée aux facteurs climatiques et géographiques, tels que l'amplitude thermique, l'altitude et la latitude signalées comme déterminants majeurs [24]. La sécrétion de l'éthylène et le méthyljasmonate augmentent la sensibilité du pêcher à L. theobromae [25]. Les facteurs de réponse à l'éthylène identifiés comme régulateurs négatifs pourraient être ciblés par les programmes de sélection variétale pour renforcer les défenses des plantes. Ces résultats pourraient aussi contribuer à la compréhension des mécanismes de défense chez d'autres espèces hôtes, telles que l'anacardier. La présence d'espèces hôtes, telle que le manguier dans les vergers d'anacardiers peut également faciliter la dissémination du pathogène. L'espèce Lasiodiplodia theobromae est plurale et distribuée dans les régions tropicales et les zones subtropicales [11]. En somme, Lasiodiplodia theobromae, pathogène des climats tropicaux et subtropicaux, se propage par les facteurs climatiques, les plantes hôtes et les activités humaines.

3-3. Stratégies de lutte contre la gommose

La connaissance sur l'écologie et l'épidémiologie d'une maladie permet la réussite des stratégies de lutte intégrée et rationnelles. Les agents pathogènes peuvent survivre dans les graines, les souches d'arbres, le sol, même chez des hôtes alternatifs [26]. Il est recommandé pour la gestion intégrée de la maladie, d'adopter en plus des porte-greffes résistants, des méthodes mécaniques, chimiques et biologiques [26, 27]. La lutte mécanique passe par l'usage des moyens mécaniques, thermiques, électromagnétiques, etc., pour la maîtrise des bioagresseurs de l'anacardier. La lutte culturale passe par le respect de l'itinéraire technique de l'anacardier qui est très capital pour obtenir de bons rendements et elle constitue également un moyen de lutte contre les maladies. La forte densité des plants et le manque d'entretien augmentent l'infestation, tandis que le respect des densités recommandées réduit l'incidence des pathogènes à moins de 25 % en Côte d'Ivoire [14]. De même au Burkina Faso, indépendamment de l'âge des anacardiers, le respect des bonnes pratiques culturales est un facteur déterminant sur la production [13]. Cependant, ces deux types de lutte sont des méthodes anciennes dont le succès est obtenu sur le long terme, en raison de la nécessité d'une longue planification et le manque de connaissances suffisantes sur la bioécologie des micro-organismes du sol [27]. Ainsi, une des conséquences directes est le recours à la lutte chimique que les producteurs considèrent comme plus efficace. L'utilisation de fongicides est le moyen le plus efficace pour la gestion des agents pathogènes fongiques. Plusieurs tests *in-vitro* et *in-vivo* à base de formulations chimiques fongiques ont montré leur efficacité sur la croissance du mycélium de Lasiodiplodia. Une étude menée au Togo a montré l'efficacité in *vitro* de cinq (05) fongicides disponibles sur le marché local contre *L. theobromae*, avec la combinaison de Banko-Plus, produit systémique et de Mancozèbe un produit de contact permettant de lutter efficacement contre la maladie du dépérissement du manguier et des citrus [28]. L'efficacité *in-vitro* du mancozèbe inhibant totalement (100 %, 500 ppm) la croissance mycélienne de Lasiodiplodia theobromae et de Lasiodiplodia pseudotheobromae a été rapportée par des études récentes au Burkina Faso [15]. Malgré sa grande utilité, la

lutte chimique présente des risques pour la santé humaine, animale et pour l'environnement, en favorisant l'apparition de maladies cancérigènes et la baisse de la biodiversité. De plus, certains bioagresseurs, comme L.theobromae, développent une résistance aux fongicides, comme rapportée par des études antérieures au Pakistan sur le manguier [29]. Face à ces limites, les auteurs ont recommandé d'intégrer des stratégies culturales et biologiques afin d'obtenir une lutte efficace. La lutte biologique ou biocontrôle est de plus en plus appliquée. Elle implique l'utilisation d'organismes vivants (parasitoïdes, prédateurs, etc.) ou d'auxiliaires utilisés pour prévenir ou réduire les dégâts des ennemis de l'anacardier. En effet, des études ont montré l'efficacité du champignon antagoniste du sol *Trichoderma asperellum* sur l'inhibition de la croissance de l'espèce Lasiodiplodia theobromae associée à la pourriture apicale chez le Pamplemoussier (Citrus maxima) [30]. La disponibilité de variétés d'anacardier tolérantes serait un atout, particulièrement dans le contexte économique des pays d'Afrique de l'Ouest, car elles seront rentables, faciles à déployer, respectueuses de l'environnement et compatibles avec la plupart des autres méthodes de lutte [31]. Malheureusement, il n'y a pas d'informations disponibles sur des variétés d'anacardiers résistantes ou tolérantes à la gommose, surtout au Burkina Faso bien que des programmes de sélection œuvrent à l'identification des arbres mères pour l'obtention de greffons performants et adaptés aux changements climatiques pour l'amélioration des rendements des vergers. Au Sénégal des études antérieures ont montré que les variétés d'anacardiers Henry, Bénin jaune, Costa Rica et James peuvent être utilisées en plantation [32]. L'utilisation de porte-greffes résistants est un moyen prometteur pour lutter contre les maladies, telle que la gommose. Un total de 357 arbres mères d'anacardiers performants ont été répertorié au Bénin dans des travaux précédents [33]. De même, au Burkina Faso, une collection de 15 arbres mères à haut rendement ont également été sélectionnés pour la production de plants par greffage [1]. Des études de criblage variétal sont également mises en œuvre pour contrôler les pathogènes responsables des maladies chez les anacardiacées. Une variabilité de sensibilité des variétés de manguier vis-à-vis de L. theobromae, allant de partiellement résistantes (16 et 36 %) à hautement sensibles (84 à 96 %) a été mise en évidence par des études antérieures au Burkina Faso [16]. Des travaux très récents [34] ont porté sur la résistance de différentes accessions d'anacardier à la bactérie Xanthomonas citri pv. mangiferaeindicae responsable des taches bactériennes. La lutte intégrée est la combinaison harmonieuse des stratégies de lutte précédemment mentionnées. Elle vise à prévenir ou à limiter les dégâts des bioagresseurs des cultures tout en respectant l'environnement et la santé humaine. Les ennemis naturels ont un rôle important dans le contexte de la protection intégrée en permettant de réguler certains ravageurs inféodés aux cultures. Des stratégies alternatives ont également montré leur efficacité contre L. theobromae. Un traitement de mélange de Trichoderma harzianum, de la bouillie bordelaise, et de l'oxyde de cuivre a permis de réduire 54,7 % des lésions de gommose sur le mandarinier [14]. Par ailleurs, des extraits de plantes médicinales, telles que le neem, l'*Ocimum*, le *Jatropha* ont montré une activité antifongique *in vitro* contre ce pathogène [15]. Ainsi, la meilleure approche pour lutter contre la gommose de l'anacardier serait outre la lutte mécanique, chimique, biologique, génétique d'explorer davantage pour la lutte intégrée.

4. Conclusion

La présente étude a permis de mettre en lumière les connaissances disponibles sur la gommose de l'anacardier dans le monde, en mettant en évidence les symptômes caractéristiques de la maladie, l'agent pathogène associé, les facteurs favorisant son développement ainsi que les méthodes de lutte disponibles. Les résultats ont révélé des études très récentes portant sur les symptômes et les agents pathogènes en lien avec la maladie chez l'anacardier au Burkina Faso. Cependant, les méthodes de lutte contre cette maladie restent très peu documentées au niveau national. Cela implique judicieusement le défi d'entreprendre des études approfondies sur les stratégies de lutte contre la maladie, afin de proposer aux décideurs politiques, aux chercheurs et aux acteurs de terrain des solutions adaptées au contexte de production de l'anacardier au Burkina Faso.

Références

- [1] W. V. TARPAGA, L. BOURGOU, M. GUIRA and A. ROUAMBA, Int. J. Biol. Chem. Sci., 14 (2021) 3188 3199
- [2] CBA, (2021) 38 p.
- [3] FAOSTAT, (2024), https://www.fao.org/faostat/fr/#data (le 07 juin 2025)
- [4] I. WONNI, D. SEREME, I. OUEDRAOGO, A. I. KASSANKAGNO, I. DAO, L. OUEDRAOGO and S. NACRO, *Adv. Plants Agric. Res.*, 6 (2017)
- [5] C. ZOMBRE, P. SANKARA, S. L. OUEDRAOGO, I. WONNI, K. BOYER, C. BOYER, M. TERVILLE, S. JAVEGNY, A. ALLIBERT, C. VERNIERE and O. PRUVOST, *Plant. Dis.*, 100 (2016) 718 723
- [6] N. I. Z. SOMDA and J. A. UGWU, Andalasian Int. J. Entomol., 2 (2024) 88 97
- [7] F. MONTEIRO, M. M. ROMEIRAS, J. BARNABÉ, S. CATARINO, D. BATISTA and M. SEBASTIANA, *Agronomy*, 12 (2022) 2553
- [8] A. ENDES et M. KAYIM, *Proc. Bulg. Acad. Sci.*, 75 (2022) 295 302
- [9] Y. J. KANSIE, Z. O. DIANDA, W. V. TARPAGA, I. WONNI, H. BOUGOUM et I. SOMDA, *Rev. Marocaine. Sci. Agron. Vét.*, 13 (2025) 227 233
- [10] S. RAHAYU, R. PRATAMA, M. A. IMRON and J. MAHMUD, W. NUGROHO, *Manag. Biol. Invasions*, 12 (2021) 886 900
- [11] S. M. EL-GANAINY, A. M. ISMAIL, Z. IQBAL, E. S. ELSHEWY, K. A. ALHUDAIB, M. I. ALMAGHASLA and D. MAGISTÀ, *J. Fungi*, 8 (2022) 1203 1203
- [12] O. Z. DIANDA, Y. J. KANSIE, I. WONNI and D. FERNANDEZ, *Physiol. Mol. Plant. Pathol.*, 138 (2025) 102698
- [13] Y. N. COULIBALY, K. TINDANO et G. ZOMBRE, J. Appl. Biosci., 178 (2022)
- [14] S. SORO, S. KONE, G. M. OUATTARA, N. SILUE, D. KONE et Y. J. KOUADIO, Eur. Sci. J., 16 (2020) 72 86
- [15] O. Z. DIANDA, I. WONNI, F. DIANA, O. TRAORE, C. T. ZOMBRE and F. BORRO, *Int. J. Biol. Chem. Sci.*, 14 (2020) 2699 2712
- [16] C. DRABO, O. Z. DIANDA, J. SANOU, Z. NIKIEMA et A. DAO, J. Appl. Biosci., 178 (2022) 18644 18657
- [17] D. EZRA, M. HERSHCOVICH and D. SHTIENBERG, *Plant Dis.*, 101 (2017) 1354 1361
- [18] S. NAKPALO, A. KOUABENAN, C. BRAHIMA, S. SIBIRINA, O. G. MARIAM, T. SEYDOU, K. MONGOMAKE et K. DAOUDA, *Asian. J. Crop. Sci.*, 9 (2017) 149 158
- [19] A. MUNTALA, S. KWADWO GYASI, P. MAWUENYEGAN NORSHIE, S. LARBI-KORANTENG, F. KWEKUCHER ACKAH, D. AFREH NTIAMOAH and M. ATEF MOHAMED, *Eur. J. Agric. Food. Sci.*, 3 (2021) 23 32
- [20] M. S. MUNIRAH, *Plant Pathol. Quar*, 7 (2017) 202 213
- [21] L. GUNAMALAI, D. DUANIS-ASSAF, T. SHARIR, D. MAURER, O. FEYGENBERG, N. SELA and N. ALKAN, *Mol. Plant-Microbe Interactions®*, 36 (2023) 502 515
- [22] M. M. SALVATORE, A. ANDOLFI and R. NICOLETTI, Agriculture, 10 (2020) 488 488
- [23] R. DHEEPA, C. GOPLAKRISHNAN, A. KAMALAKANNAN and S. NAKKEERAN, *J. Pharmacogn. Phytochem.*, 7 (1) (2018) 2729 2732
- [24] E. S. ALVES, W. L. FONSECA, L. G. C. D. SILVA, J. S. LIMA and J. E. CARDOSO, Rev. Ciênc. Agronômica, 51 (2020)
- [25] D. ZHANG, X. SHEN, H. ZHANG, X. HUANG, H. HE, J. YE, F. CARDINALE, J. LIU, J. LIU and G. LI, *Hortic. Res.*, 9 (2022)
- [26] M. E. DWIASTUTI, *IOP Conf. Ser. Earth Environ. Sci.*, 484 (2020) 012097
- [27] R. SABERI RISEH and F. FATHI, Pist. Health J., 1 (2018)
- [28] E. TEDIHOU, K. KPEMOUA et A. TOUNOU, J. Appl. Biosci., 119 (2018) 11829
- [29] U. REHMAN, U. DIN, S. NAQVI, M. LATIF, S. KHAN, M. MALIK and S. FREED, Arch. Biol. Sci., 67 (2015) 241 249
- [30] N. Q. KHUONG, D. B. NHIEN, L. T. M. THU, N. D. TRONG, P. C. HIEP, V. M. THUAN, L. T. QUANG, L. V. THUC and D. T. XUAN, *J. Fungi*, 9 (2023) 981

- [31] B. R. AHISSOU, W. M. SAWADOGO, A. H. BOKONON-GANTA, I. SOMDA and F. VERHEGGEN, *B. A. S. E.*, (2021) 192 207
- [32] A. T. MAMOUDOU, F. ELHADJI et G. RAMATOULAYE, VertigO Rev. Électronique En Sci. Environ., (2017)
- [33] K. N'DJOLOSSE, H. ADOUKONOU-SAGBADJA, R. MALIKI, S. KODJO, A. BADOU and R. N. A. ADJOVI, *Int. J. Biol. Chem. Sci.*, 14 (2020) 1536 1546
- [34] C. ZOMBRE, V. W. TARPAGA, B. OUATTARA, M. SONDO, Y. TRAORE, O. Z. DIANDA, A. OUATTARA, R. S. OUÉDRAOGO, B. SCHÉMAÉZA and I. WONNI, *Plant Prot.*, 9 (2025) 89 97